Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Pharmacol Biochem Behav ; 220: 173455, 2022 10.
Article in English | MEDLINE | ID: covidwho-2008018

ABSTRACT

Major depressive disorder (MDD) has increasingly reached the world population with an expressive increase in recent years due to the COVID-19 pandemic. Here we used adult zebrafish (Danio rerio) as a model to verify the effects of reserpine on behavior and neurotransmitter levels. We observed an increase in the immobile time and time spent in the bottom zone of the tank in reserpine-exposed animals. The results demonstrated a decrease in distance traveled and velocity. Reserpine exposure did not induce changes in memory and social interaction compared to the control group. We also evaluated the influence of exposure to fluoxetine, a well-known antidepressant, on the behavior of reserpine-exposed animals. We observed a reversal of behavioral alterations caused by reserpine. To verify whether behavioral alterations in the putative depression model induced by reserpine could be prevented, the animals were subjected to physical exercise for 6 weeks. The results showed a protective effect of the physical exercise against the behavioral changes caused by reserpine in zebrafish. In addition, we observed a reduction in dopamine and serotonin levels and an increase in the 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the brain. Physical exercise was able to prevent the changes in dopamine and serotonin levels, reinforcing that the preventive effect promoted by physical exercise is related to the modulation of neurotransmitter levels. Our findings showed that reserpine was effective in the induction of a putative depression model in zebrafish and that physical exercise may be an alternative to prevent the effects induced by reserpine.


Subject(s)
COVID-19 , Depressive Disorder, Major , 3,4-Dihydroxyphenylacetic Acid , Animals , Antidepressive Agents/pharmacology , Behavior, Animal , Depression/chemically induced , Depression/prevention & control , Depressive Disorder, Major/drug therapy , Dopamine/pharmacology , Exercise , Fluoxetine/pharmacology , Humans , Pandemics , Reserpine/pharmacology , Serotonin , Zebrafish
2.
Molecules ; 27(11)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1892924

ABSTRACT

Excessive corticosterone (CORT), resulting from a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, is associated with cognitive impairment and behavioral changes, including depression. In Korean oriental medicine, Pedicularis resupinata is used for the treatment of inflammatory diseases such as rheumatoid arthritis. However, the antidepressant properties of P. resupinata have not been well characterized. Here, the antidepressant-like effects of P. resupinata extract (PRE) were evaluated in terms of CORT-induced depression using in vivo models. HPLC confirmed that acteoside, a phenylethanoid glycoside, was the main compound from PRE. Male ICR mice (8 weeks old) were injected with CORT (40 mg/kg, i.p.) and orally administered PRE daily (30, 100, and 300 mg/kg) for 21 consecutive days. Depressive-like behaviors were evaluated using the open-field test, sucrose preference test, passive avoidance test, tail suspension test, and forced swim test. Treatment with a high dose of PRE significantly alleviated CORT-induced, depressive-like behaviors in mice. Additionally, repeated CORT injection markedly reduced brain-derived neurotrophic factor levels, whereas total glucocorticoid receptor (GR) and GR phosphorylation at serine 211 were significantly increased in the mice hippocampus but improved by PRE treatment. Thus, our findings suggest that PRE has potential antidepressant-like effects in CORT-induced, depressive-like behavior in mice.


Subject(s)
Corticosterone , Pedicularis , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal , Corticosterone/adverse effects , Depression/chemically induced , Depression/drug therapy , Depression/psychology , Disease Models, Animal , Hippocampus , Male , Mice , Mice, Inbred ICR , Pituitary-Adrenal System , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Receptors, Glucocorticoid
3.
Immunopharmacol Immunotoxicol ; 43(3): 309-318, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1242073

ABSTRACT

BACKGROUND: Depression affects people feeling to be anxious, worried, and restless. They also lose interest in activities, concentrating and appetite, they finally may attempt suicide. Depression is the second chronic disease, as a source of the global burden of disease, after heart disease. Its prevalence elevated seven times during the COVID-19. AIM: The current study was designed to evaluate camphor neuroprotective role against rats' ciprofloxacin-induced depression. MATERIALS AND METHODS: Depression was induced by administration of ciprofloxacin (50 mg/kg; orally) for 21 days. Wister albino male rats were divided into five groups. Group I (normal control): rats were given normal saline. Group II: rats received camphor (10 mg/kg; i.p.) for 21 days. Group III (depression control): rats received ciprofloxacin only. Groups IV and V: rats received camphor (5 and 10 mg/kg; i.p.) for 21 days concurrent with ciprofloxacin. Behavior tests as forced swimming test, activity cage, and rotarod were estimated. Oxidative stress and antioxidant biomarkers as malondialdehyde (MDA), nitric oxide (NO), catalase, and nuclear factor erythroid 2-related factor 2 (Nrf-2) besides inflammatory biomarkers as Toll-like receptor 4 (TLR4) and tumor necrosis factor alpha (TNF-α) as well as neurotransmitters were determined. Finally, histopathological examination was done. RESULTS: Camphor increased catalase and Nrf-2 activities, decreased NO, MDA, TNF-α, TLR4 serum levels, and elevating brain contents of serotonin, dopamine, gamma-amino butyric acid (GABA) and P190-RHO GTP protein with normal neuronal cells of the frontal cortex. CONCLUSION: Camphor has neuroprotective effect via modulation of Nrf-2 and TLR4 against ciprofloxacin-induced depression in rats.


Subject(s)
Camphor/pharmacology , Ciprofloxacin/adverse effects , Depression , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Toll-Like Receptor 4/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Ciprofloxacin/pharmacology , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Male , Rats , Rats, Wistar , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL